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Detection of confinement and jumps in single-molecule membrane trajectories
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We propose a variant of the algorithm by [R. Simson, E. D. Sheets, and K. Jacobson, Biophys. 69, 989
(1995)]. Their algorithm was developed to detect transient confinement zones in experimental single-particle
tracking trajectories of diffusing membrane proteins or lipids. We show that our algorithm is able to detect
confinement in a wider class of confining potential shapes than that of Simson et al. Furthermore, it enables to

detect not only temporary confinement but also jumps between confinement zones. Jumps are predicted by
membrane skeleton fence and picket models. In the case of experimental trajectories of w-opioid receptors,
which belong to the family of G-protein-coupled receptors involved in a signal transduction pathway, this
algorithm confirms that confinement cannot be explained solely by rigid fences.
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One of the central issues of contemporary cellular biology
is to establish the relationship between dynamical organiza-
tion and biological functions of membrane constituents. The
development of single-particle tracking (SPT) techniques
gives insight into dynamical organization of membranes that
have been inaccessible by ensemble-average methods. In-
deed, the diffusive motion of molecules of interest (proteins
or lipids) at the surface of living cells can be followed with a
nanometric resolution, after labeling them by means of fluo-
rophores, gold colloids, latex beads, or quantum dots [1].
Yet, specific and performant tools must be developed to ex-
tract valuable information from these trajectories.

After more than 15 years of efforts using SPT techniques,
the question of cell membrane organization and compart-
mentalization is still a matter of intense and controversial
debate [2-7]. What is the origin of the confinement quite
generally observed in tracking experiments? How is it re-
lated to the transmission of signals through the membrane?
Confinement is, indeed, commonly observed in SPT trajec-
tories: the diffusive motion is not purely Brownian, but
rather affected by either rigid obstacles [confining domains
such as rafts (or other signaling platforms)] or molecular
interactions. Confinement can be transient [2], the molecule
being now and then trapped in “transient confinement zones”
(TCZs). Experimental situations also exist where the mol-
ecule is always confined, while showing a long-term slow
diffusion. There exist different models that account for such
a behavior. In the “membrane skeleton fence and picket
models” [8,9], the confinement is due to the cytoskeleton of
the cell close to the membrane, or by proteins anchored to it,
which form rigid corrals. Successive hops between adjacent
domains result in a slow long-term diffusion of the mol-
ecules (Fig. 1). The recent alternative “interacting Brownian
particle model” [4] proposes that, in the case studied in this
reference, barriers do not satisfyingly explain the observed
confinement, which more likely originates from long-range
attractive interactions between membrane proteins. The latter
form autoassembled aggregates in which proteins are
trapped. The long-term diffusive behavior is the manifesta-
tion of the diffusion of the center of mass of the assembly.
We demonstrate that the algorithm studied in this paper is
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able to discriminate between these models. Indeed, in a fence
and picket model, proteins regularly jump from a confining
zone to an adjacent one. By contrast, the “interacting Brown-
ian particle model” does not require jumps to account for
long-term slow diffusion. We show that, despite statistical
fluctuations, our algorithm detects jumps with good confi-
dence, when they exist. We calculate how many jumps are
theoretically expected in a fence and picket model and com-
pare this number to the effectively detected ones in experi-
mental trajectories of Ref. [4] (u-opioid receptors). We find
that there is an unequivocal discrepancy. This proves that
rigid fences cannot be considered as a unique source of con-
finement.

Beyond this particular example, our algorithm intends to
be applicable to a wide range of experimental situations. It
responds to an increasing demand consecutive to the rapid
development of SPT experiments. It is a challenge to develop
a simple and reliable tool to discriminate between different
sources of confinement or, more simply, between confined

FIG. 1. (Color online) Example of trajectory in a square grid of
rigid barriers of periodicity L. At short times, the particle diffuses in
a closed box, where it stays on average a time 7. Periodically, it
jumps from one box to an adjacent one, thus, resulting in a slow
long-term diffusion with constant D,,.
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and nonconfined trajectories. The present paper intends to
propose such a robust tool.

Simson er al.’s algorithm [10] has been designed to detect
transient confinement. It is based on the following principle.
Consider a Brownian trajectory r(r) on a time interval
[to.to+ Ot]. The maximum of ||r(£) —=r(z,)||> on [z, 1o+ Ot], de-
noted by rmax, scales like Ddt, where D is the diffusion con-
stant. Then the authors define a confinement index \ (de-
noted by L in their paper) that is an affine function of
Dét/r Imax- D 18 determined by measuring the slope at the
origin of the mean-square deviation (MSD), MSD(z). If the
diffusion is confined in a domain of typical size L, then r2
is limited by L% and \ is larger than in the case of free
Brownian diffusion. The authors determine a threshold A..
Roughly speaking, if A >\, the diffusion is confined; other-
wise, it is free (see Ref. [10] for more details). Along a
trajectory, \(7) is calculated on sliding intervals [r—&1/2,1
+6t/2]. The plot of \(r) indicates TCZs as intervals where
N>\,

We show that even though Simson ef al.’s method is ap-
plicable to a large variety of experimental cases, there exist
situations of great interest where it is not operational. First,
artifactual detections of TCZs can happen when D varies
along the trajectory [4]. This problem is fixed by computing
D locally by the same method, on intervals of a few seconds.
More importantly, this method fails in detecting confinement
in nonflat potentials. For example, in a quadratic well of
typical width L at temperature 7, the molecule is likely to
explore regions of energy of several k3T where r> L, and the
measured 72 fluctuates a lot around its typical value, de-
pending on whether or not such rare points are in the trajec-
tory. We experienced that it happens that Simson et al.’s
algorithm does not detect flagrant confinement in quadratic
potentials or in experimental trajectories (see Fig. 2, for ex-
ample). The algorithm proposed in Ref. [11], also based on

72, presents the same hmltatlons This is intrinsic to the
methods, namely, the choice of rmax to characterize trajectory
wanders, and not to a particular choice of parameters.

For this reason, we modify the above algorithm as fol-
lows: instead of calculating rmax, we compute the variance
Ar?(t) of r on intervals [t—&t/2,t+ 6t/2]. Rare points wan-
dering far away from the potential minimum thus have a low
weight in Ar?(¢), which gives a more accurate measurement
of the typical width of the confining potential. Of course, in
the case of flat potentials delimited by rigid fences, both
algorithms present a similar efficiency. A confinement index
is now defined

D6t
A—p (1)

Up to a numerical prefactor, A is the ratio of the variance of
a free random walk to the variance of the trajectory under
study. If it is unconfined, A will be of order unity, whereas it
will be large in the converse case. We calculate the typical
values of A in the respective cases of free Brownian two-
dimensional trajectories and confined ones. We model our
Brownian molecule by an overdamped Langevin particle:
dr/dt=n(t), where 5 is a Gaussian white noise: (7)=0 and
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FIG. 2. (Color online) Top: Profile A(z) for a numerical trajec-
tory with 7,,,=20 s. We have also plotted the threshold aA(r) with
a=0.7. Real jumps are represented by diamonds and detected ones
by circles. One can see five detected jumps among which there is
one double jump (detected only once). Note that the first and last
St/2 segments are not taken into account because A(r) cannot be
calculated there. Bottom (upper plot): Profile for an experimental
trajectory, with three detected jumps. Here 7,,,=9.6 s and the fence
model would predict 12 jumps. Some intervals where A(r)
<aA(r) are not considered as jumps because they are not long
enough. Bottom (lower plot): Profile \(¢) calculated with Simson et
al.’s algorithm [10] and the threshold \.=3.16 (see [10] for details).
The receptor is apparently hardly ever confined.

(mi()n(¢'))=2D &;8(t—1"). Then the mean position 7 and the
mean-square position 7 are calculated on a single trajectory
before being averaged over noise, leading to Ar’=(r’—7%)
=(§)D§t. Statistical fluctuations of this quantity can also be
calculated using Wick’s theorem [12] to compute four-time
correlators of 7 A(F2-F ) Dc‘)‘t Thus, Apgown=1/ (-

;‘ 5) 4 for a pure Brownian trajectory, independently of &¢
and D, as checked on numerical trajectories. Now we con-
sider confined diffusion in a square box of side L. If one

averages over N> 1 independent positions, one gets Ar’
=1°/6,

Aont=6DSH/L?. (2)

In this confined case, the statistical fluctuations of Ar? vanish
at large N. Hence TCZs will be distinguishable from pure
Brownian trajectories if A = Apgrowns 1-€., if Agn>4 or
D5t/L2>§. As expected, ot must be sufficiently large to
enable detection. Note that above we have asked for the
number of independent images to be sufficiently large. In
practice, positions in successive images are correlated be-
cause the equilibriation time to explore a box of side L is 7
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=L?*/ 7D [4]. One must make sure that N> 1 with respect to
this time.

Our algorithm detects confinement with excellent reliabil-
ity, whatever the shape of the box or of any nonflat confining
potential. Now how does it detects jumps over fences? We
suppose, first, that the molecule evolves in a grid of square
boxes of side L, separated by rigid barriers, and that it can
jump over a barrier by thermal activation (Fig. 1). It has a
long-term slow diffusion with a constant D,;: Ar>=4D,,t at
large 7. If 7, is the average time of residence in a box (i.e.,
the average time between successive jump), then L?
=4Dy, T, When the molecule is confined in a single box,
A=A If there is a jump at time 7, in a segment I=[r
—6t12,t+ 6t/2], then the particle is virtually in a larger box
2L X L; it spends a time #,—¢+ 6t/2 in a box and the remain-
ing time in an adjacent one. If dtr> 7, the probability distri-
bution of the molecule position is close to uniform in each
box. This permits to calculate A7’ by partitioning / in two
intervals, one for each box. One gets

Aconf
——— < A
2 (l _ t0)2 conf
5 o

AG=3 (3)

There is a gap centered at f, in the profile A(r) and A(z,)
=2A o/ 5 (see Fig. 2). In the case of multiple jumps in 7, the
corresponding gaps merge. To resolve single jumps at best,
we choose Otr=<7,,/3. In addition, & must be as large as
possible to get higher profiles A(¢) where confinement is best
detected. Therefore, we set
L2
OF =3 Tres = 12D, 4)
In order to detect these gaps, one must also make sure that
their minima are higher than Ag,,,,, the “background noise”
of pure Brownian trajectories. Indeed, if not, the depth of the
gap will be reduced, and this will corrupt detection. This
condition reads 2A ., ¢/5>4, or A > 10. Together with
Eq. (4), it can be written in terms of the measurable quanti-
ties D and Dy,

D >20D,,. (5)

In other words, long- and short-term time scales must be well
separated. This is observed in a large majority of the experi-
mental trajectories below.

Now we evaluate the capabilities of our algorithm on nu-
merical trajectories. They simulate Brownian molecules
evolving in a square grid of rigid barriers of periodicity L.
When a step crosses a barrier, it is allowed with a probability
p suitably defined so that the long-term diffusion constant
equals D;,. Numerical parameters match those of experimen-
tal trajectories (see below). One image is sampled every
40 ms. In addition, D is allowed to vary slowly with time in
a given trajectory, to mimic possible composition or physical
changes of the underlying membrane. More precisely, every
second, D is multiplied by a factor randomly chosen in the
interval [0.9,1.1]. To calculate A, we measure the diffusion
constant D,, by calculating the MSD on intervals of 5 s and
fitting the slope at the origin (first three points). We check
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that D,,=D. Because of statistical fluctuations on finite
samples, all jumps cannot be detected and there are false
detections. We denote by o the fraction of jumps success-
fully detected by the algorithm among real jumps and by &
the ratio of false detections to real jumps. The higher o and
the lower & are, the best the algorithm. To localize jumps, we
need to estimate the value A, since gaps are intervals
where A(r) is significantly smaller than the confinement
value A, for a sufficient duration. In practice, we proceed
as follows. We compute D,, as detailed above. We measure
Ar? and we calculate A() (see Fig. 2). To avoid biases due to

the slow variations of D, we calculate the average A(t) of
A(1) over successive segments of 30 s; A(7) is our estimation

of the confined profile: A(f)= A, because we anticipate
that jumps are rare. Next, we detect intervals where the sig-

nal is well below A. More precisely, we require that A(r)

< aA(r) for a duration larger than 7., where the parameters 7,
and ae[0,1] must be optimized. We have scanned large
ranges of values of both « and ¢,, and calculated o and & in
each case (10° trajectories of T=120 s), with the typical pa-
rameters of the experimental trajectories below: D
=0.1 um?s™!', L=0.3 um, 7,,,=10-20 s. We observed that
t,.=0t/2 and a=0.7 gives the best compromise with o
=63% and 0=<0.7%. The algorithm detects two-thirds of
the jumps and makes very few false detections. The value of
o comes from the fact that close jumps cannot be resolved
and are counted only once.

Another serious complication can arise in experimental
trajectories. The confinement domains are not necessarily
squares. If they are elongated, like rectangles or more com-
plex shapes, Eq. (3) is no longer valid. Consider, for in-
stance, rectangles L X pL. There are two types of jumps, over
short or long edges. It can easily be quantified how this af-
fects the relative depths of the gaps associated with each type
of jump. If the rectangle is extremely elongated, then only
jumps over short edges can be reasonably detected. This
complication can be overcome by measuring Ax*> and Ay?
and multiplying the latter by a counterweight: A, *=Ax?
+Ay?/p?. Then both kinds of gaps again have the same depth
and the previous analysis becomes valid. If the main axis of
the box are not parallel to the axes Ox and Oy, then before
applying counterweights, one must recover the average di-
rections of these main axes by diagonalizing the correlation
matrix C=(r(t)r’(1))—{r(H))}r’ (1)) averaged over sufficiently
long time intervals (typically 30 s). We checked that this
procedure is operational, even though it significantly in-
creases the number of false detections because of additional
numerical operations. However, this question goes beyond
the scope of this paper because in the experimental trajecto-
ries below, by diagonalizing C, we find p=1.4 on average
(while p=2.1 for a pure unconfined random walk [13]), in
which case both types of gaps have typically the same depth
and o and o are not significantly affected if one uses the
original profile (1): 0=55% and ¢<2.5%.

Now we apply our algorithm to the 102 experimental tra-
jectories from Ref. [4]. These are trajectories of u-opioid
receptors at the surface of normal rat kidney fibroblast cells,
tracked by SPT, after being labeled by 40 nm gold colloids,
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at 40 ms time resolution during 7=120 s. The parameters D,
Dy, and L are measured [4] by fitting the MSD by MSD(z)
=(L?/3)[1—exp(=12Dt/L*)]+4D,,t. Typically, D
~0.1 um?s7!, L~0.3 um, 7,.,~ 10 s. From D,; and L, we
deduce 7. In [4], it was noted that ~15% of the trajectories
show significant slow variations of D and L? in a same tra-
jectory, up to one order of magnitude for D. This could be a
serious concern because variations of these parameters cause
variations of the reference value A, that could be misin-
terpreted as jumps. Fortunately, it was also noted that on
individual trajectories, Do L> when D and L vary along a
trajectory. Consequently, A.,,; varies only moderately (see
Fig. 2, bottom). This is well mimicked by the slow variations
of D at fixed L that we have imposed in numerical trajecto-
ries. If ot=7,,/3 exceeds 15 s, we set dt=15 s, not to lose
too many points at the beginning and the end of the trajec-
tory (see Fig. 2). We eliminate the 18 trajectories that do not
satisfy condition (5), as well as those that were qualified of
“slow or directed diffusion” in Ref. [4], because their MSD
were more correctly fitted by the corresponding theoretical
equations. We are left with 67 trajectories.

First of all, we check that A>4 on all profiles. This con-
firms that all trajectories are confined. From the value of 7,
we estimate the expected number of jumps, if the trajectories
were correctly described by a fence or corral model, namely,
(T- 6t)/ 7es. Then, we count the detected jumps. An example
is provided in Fig. 2 (bottom). We find that the average ratio
of detected jumps to the ones expected with fence or corral
models is only 0.,=16.4%, where we expected more than
55%. The histogram in Fig. 3 gives greater details. There-
fore, as already concluded using independent arguments in
Ref. [4], a fence or corral model is not able to account alone
for experimental observations.

We clearly see that two populations of receptors emerge
in the histogram. The first population (empty bars) contains
19 trajectories, of average detection ratio o =58%, the de-
tected jumps of which can perfectly be accounted for by a
fence or picket model. The second population (shaded bar)
concerns 48 trajectories where we do not detect any jump.

PHYSICAL REVIEW E 73, 011915 (2006)

50 | ‘ ‘
40
30
20
10
% 25 50 75

75

# trajectories

() (cyo)

FIG. 3. (Color online) Histogram: ratios of detected jumps to the
ones expected in a fence model, on experimental 67 trajectories of
u-opioid receptors [4]. An event at 0=400% is not shown.

Their long-term diffusion cannot be explained by any fence
or picket model.

We are led to the following original conclusion: hop dif-
fusion probably exists in trajectories of u-opioid receptors
and can satisfyingly explain the long-term diffusive behavior
of nearly 30% of the analyzed trajectories. But another
mechanism must be invoked to explain long-term diffusion
in a majority of cases. This reinforces the need for an alter-
native model to account for long-term diffusion, as proposed
in Ref. [4]. We might even ask if two distinct mechanisms
are not independently at work in cells to achieve confine-
ment, and if there would not exist two populations of w
receptors: the first ones confined by fences or pickets and the
other ones by long-range inter-protein interactions. Addi-
tional experiments will be necessary to test this hypothesis.
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